1396 lines
40 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="AsciiDoc 10.2.0">
<title>TESSERACT(1)</title>
<style type="text/css">
/* Shared CSS for AsciiDoc xhtml11 and html5 backends */
/* Default font. */
body {
font-family: Georgia,serif;
}
/* Title font. */
h1, h2, h3, h4, h5, h6,
div.title, caption.title,
thead, p.table.header,
#toctitle,
#author, #revnumber, #revdate, #revremark,
#footer {
font-family: Arial,Helvetica,sans-serif;
}
body {
margin: 1em 5% 1em 5%;
}
a {
color: blue;
text-decoration: underline;
}
a:visited {
color: fuchsia;
}
em {
font-style: italic;
color: navy;
}
strong {
font-weight: bold;
color: #083194;
}
h1, h2, h3, h4, h5, h6 {
color: #527bbd;
margin-top: 1.2em;
margin-bottom: 0.5em;
line-height: 1.3;
}
h1, h2, h3 {
border-bottom: 2px solid silver;
}
h2 {
padding-top: 0.5em;
}
h3 {
float: left;
}
h3 + * {
clear: left;
}
h5 {
font-size: 1.0em;
}
div.sectionbody {
margin-left: 0;
}
hr {
border: 1px solid silver;
}
p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
ul, ol, li > p {
margin-top: 0;
}
ul > li { color: #aaa; }
ul > li > * { color: black; }
.monospaced, code, pre {
font-family: "Courier New", Courier, monospace;
font-size: inherit;
color: navy;
padding: 0;
margin: 0;
}
pre {
white-space: pre-wrap;
}
#author {
color: #527bbd;
font-weight: bold;
font-size: 1.1em;
}
#email {
}
#revnumber, #revdate, #revremark {
}
#footer {
font-size: small;
border-top: 2px solid silver;
padding-top: 0.5em;
margin-top: 4.0em;
}
#footer-text {
float: left;
padding-bottom: 0.5em;
}
#footer-badges {
float: right;
padding-bottom: 0.5em;
}
#preamble {
margin-top: 1.5em;
margin-bottom: 1.5em;
}
div.imageblock, div.exampleblock, div.verseblock,
div.quoteblock, div.literalblock, div.listingblock, div.sidebarblock,
div.admonitionblock {
margin-top: 1.0em;
margin-bottom: 1.5em;
}
div.admonitionblock {
margin-top: 2.0em;
margin-bottom: 2.0em;
margin-right: 10%;
color: #606060;
}
div.content { /* Block element content. */
padding: 0;
}
/* Block element titles. */
div.title, caption.title {
color: #527bbd;
font-weight: bold;
text-align: left;
margin-top: 1.0em;
margin-bottom: 0.5em;
}
div.title + * {
margin-top: 0;
}
td div.title:first-child {
margin-top: 0.0em;
}
div.content div.title:first-child {
margin-top: 0.0em;
}
div.content + div.title {
margin-top: 0.0em;
}
div.sidebarblock > div.content {
background: #ffffee;
border: 1px solid #dddddd;
border-left: 4px solid #f0f0f0;
padding: 0.5em;
}
div.listingblock > div.content {
border: 1px solid #dddddd;
border-left: 5px solid #f0f0f0;
background: #f8f8f8;
padding: 0.5em;
}
div.quoteblock, div.verseblock {
padding-left: 1.0em;
margin-left: 1.0em;
margin-right: 10%;
border-left: 5px solid #f0f0f0;
color: #888;
}
div.quoteblock > div.attribution {
padding-top: 0.5em;
text-align: right;
}
div.verseblock > pre.content {
font-family: inherit;
font-size: inherit;
}
div.verseblock > div.attribution {
padding-top: 0.75em;
text-align: left;
}
/* DEPRECATED: Pre version 8.2.7 verse style literal block. */
div.verseblock + div.attribution {
text-align: left;
}
div.admonitionblock .icon {
vertical-align: top;
font-size: 1.1em;
font-weight: bold;
text-decoration: underline;
color: #527bbd;
padding-right: 0.5em;
}
div.admonitionblock td.content {
padding-left: 0.5em;
border-left: 3px solid #dddddd;
}
div.exampleblock > div.content {
border-left: 3px solid #dddddd;
padding-left: 0.5em;
}
div.imageblock div.content { padding-left: 0; }
span.image img { border-style: none; vertical-align: text-bottom; }
a.image:visited { color: white; }
dl {
margin-top: 0.8em;
margin-bottom: 0.8em;
}
dt {
margin-top: 0.5em;
margin-bottom: 0;
font-style: normal;
color: navy;
}
dd > *:first-child {
margin-top: 0.1em;
}
ul, ol {
list-style-position: outside;
}
ol.arabic {
list-style-type: decimal;
}
ol.loweralpha {
list-style-type: lower-alpha;
}
ol.upperalpha {
list-style-type: upper-alpha;
}
ol.lowerroman {
list-style-type: lower-roman;
}
ol.upperroman {
list-style-type: upper-roman;
}
div.compact ul, div.compact ol,
div.compact p, div.compact p,
div.compact div, div.compact div {
margin-top: 0.1em;
margin-bottom: 0.1em;
}
tfoot {
font-weight: bold;
}
td > div.verse {
white-space: pre;
}
div.hdlist {
margin-top: 0.8em;
margin-bottom: 0.8em;
}
div.hdlist tr {
padding-bottom: 15px;
}
dt.hdlist1.strong, td.hdlist1.strong {
font-weight: bold;
}
td.hdlist1 {
vertical-align: top;
font-style: normal;
padding-right: 0.8em;
color: navy;
}
td.hdlist2 {
vertical-align: top;
}
div.hdlist.compact tr {
margin: 0;
padding-bottom: 0;
}
.comment {
background: yellow;
}
.footnote, .footnoteref {
font-size: 0.8em;
}
span.footnote, span.footnoteref {
vertical-align: super;
}
#footnotes {
margin: 20px 0 20px 0;
padding: 7px 0 0 0;
}
#footnotes div.footnote {
margin: 0 0 5px 0;
}
#footnotes hr {
border: none;
border-top: 1px solid silver;
height: 1px;
text-align: left;
margin-left: 0;
width: 20%;
min-width: 100px;
}
div.colist td {
padding-right: 0.5em;
padding-bottom: 0.3em;
vertical-align: top;
}
div.colist td img {
margin-top: 0.3em;
}
@media print {
#footer-badges { display: none; }
}
#toc {
margin-bottom: 2.5em;
}
#toctitle {
color: #527bbd;
font-size: 1.1em;
font-weight: bold;
margin-top: 1.0em;
margin-bottom: 0.1em;
}
div.toclevel0, div.toclevel1, div.toclevel2, div.toclevel3, div.toclevel4 {
margin-top: 0;
margin-bottom: 0;
}
div.toclevel2 {
margin-left: 2em;
font-size: 0.9em;
}
div.toclevel3 {
margin-left: 4em;
font-size: 0.9em;
}
div.toclevel4 {
margin-left: 6em;
font-size: 0.9em;
}
span.aqua { color: aqua; }
span.black { color: black; }
span.blue { color: blue; }
span.fuchsia { color: fuchsia; }
span.gray { color: gray; }
span.green { color: green; }
span.lime { color: lime; }
span.maroon { color: maroon; }
span.navy { color: navy; }
span.olive { color: olive; }
span.purple { color: purple; }
span.red { color: red; }
span.silver { color: silver; }
span.teal { color: teal; }
span.white { color: white; }
span.yellow { color: yellow; }
span.aqua-background { background: aqua; }
span.black-background { background: black; }
span.blue-background { background: blue; }
span.fuchsia-background { background: fuchsia; }
span.gray-background { background: gray; }
span.green-background { background: green; }
span.lime-background { background: lime; }
span.maroon-background { background: maroon; }
span.navy-background { background: navy; }
span.olive-background { background: olive; }
span.purple-background { background: purple; }
span.red-background { background: red; }
span.silver-background { background: silver; }
span.teal-background { background: teal; }
span.white-background { background: white; }
span.yellow-background { background: yellow; }
span.big { font-size: 2em; }
span.small { font-size: 0.6em; }
span.underline { text-decoration: underline; }
span.overline { text-decoration: overline; }
span.line-through { text-decoration: line-through; }
div.unbreakable { page-break-inside: avoid; }
/*
* xhtml11 specific
*
* */
div.tableblock {
margin-top: 1.0em;
margin-bottom: 1.5em;
}
div.tableblock > table {
border: 3px solid #527bbd;
}
thead, p.table.header {
font-weight: bold;
color: #527bbd;
}
p.table {
margin-top: 0;
}
/* Because the table frame attribute is overridden by CSS in most browsers. */
div.tableblock > table[frame="void"] {
border-style: none;
}
div.tableblock > table[frame="hsides"] {
border-left-style: none;
border-right-style: none;
}
div.tableblock > table[frame="vsides"] {
border-top-style: none;
border-bottom-style: none;
}
/*
* html5 specific
*
* */
table.tableblock {
margin-top: 1.0em;
margin-bottom: 1.5em;
}
thead, p.tableblock.header {
font-weight: bold;
color: #527bbd;
}
p.tableblock {
margin-top: 0;
}
table.tableblock {
border-width: 3px;
border-spacing: 0px;
border-style: solid;
border-color: #527bbd;
border-collapse: collapse;
}
th.tableblock, td.tableblock {
border-width: 1px;
padding: 4px;
border-style: solid;
border-color: #527bbd;
}
table.tableblock.frame-topbot {
border-left-style: hidden;
border-right-style: hidden;
}
table.tableblock.frame-sides {
border-top-style: hidden;
border-bottom-style: hidden;
}
table.tableblock.frame-none {
border-style: hidden;
}
th.tableblock.halign-left, td.tableblock.halign-left {
text-align: left;
}
th.tableblock.halign-center, td.tableblock.halign-center {
text-align: center;
}
th.tableblock.halign-right, td.tableblock.halign-right {
text-align: right;
}
th.tableblock.valign-top, td.tableblock.valign-top {
vertical-align: top;
}
th.tableblock.valign-middle, td.tableblock.valign-middle {
vertical-align: middle;
}
th.tableblock.valign-bottom, td.tableblock.valign-bottom {
vertical-align: bottom;
}
/*
* manpage specific
*
* */
body.manpage h1 {
padding-top: 0.5em;
padding-bottom: 0.5em;
border-top: 2px solid silver;
border-bottom: 2px solid silver;
}
body.manpage h2 {
border-style: none;
}
body.manpage div.sectionbody {
margin-left: 3em;
}
@media print {
body.manpage div#toc { display: none; }
}
</style>
<script type="text/javascript">
/*<![CDATA[*/
var asciidoc = { // Namespace.
/////////////////////////////////////////////////////////////////////
// Table Of Contents generator
/////////////////////////////////////////////////////////////////////
/* Author: Mihai Bazon, September 2002
* http://students.infoiasi.ro/~mishoo
*
* Table Of Content generator
* Version: 0.4
*
* Feel free to use this script under the terms of the GNU General Public
* License, as long as you do not remove or alter this notice.
*/
/* modified by Troy D. Hanson, September 2006. License: GPL */
/* modified by Stuart Rackham, 2006, 2009. License: GPL */
// toclevels = 1..4.
toc: function (toclevels) {
function getText(el) {
var text = "";
for (var i = el.firstChild; i != null; i = i.nextSibling) {
if (i.nodeType == 3 /* Node.TEXT_NODE */) // IE doesn't speak constants.
text += i.data;
else if (i.firstChild != null)
text += getText(i);
}
return text;
}
function TocEntry(el, text, toclevel) {
this.element = el;
this.text = text;
this.toclevel = toclevel;
}
function tocEntries(el, toclevels) {
var result = new Array;
var re = new RegExp('[hH]([1-'+(toclevels+1)+'])');
// Function that scans the DOM tree for header elements (the DOM2
// nodeIterator API would be a better technique but not supported by all
// browsers).
var iterate = function (el) {
for (var i = el.firstChild; i != null; i = i.nextSibling) {
if (i.nodeType == 1 /* Node.ELEMENT_NODE */) {
var mo = re.exec(i.tagName);
if (mo && (i.getAttribute("class") || i.getAttribute("className")) != "float") {
result[result.length] = new TocEntry(i, getText(i), mo[1]-1);
}
iterate(i);
}
}
}
iterate(el);
return result;
}
var toc = document.getElementById("toc");
if (!toc) {
return;
}
// Delete existing TOC entries in case we're reloading the TOC.
var tocEntriesToRemove = [];
var i;
for (i = 0; i < toc.childNodes.length; i++) {
var entry = toc.childNodes[i];
if (entry.nodeName.toLowerCase() == 'div'
&& entry.getAttribute("class")
&& entry.getAttribute("class").match(/^toclevel/))
tocEntriesToRemove.push(entry);
}
for (i = 0; i < tocEntriesToRemove.length; i++) {
toc.removeChild(tocEntriesToRemove[i]);
}
// Rebuild TOC entries.
var entries = tocEntries(document.getElementById("content"), toclevels);
for (var i = 0; i < entries.length; ++i) {
var entry = entries[i];
if (entry.element.id == "")
entry.element.id = "_toc_" + i;
var a = document.createElement("a");
a.href = "#" + entry.element.id;
a.appendChild(document.createTextNode(entry.text));
var div = document.createElement("div");
div.appendChild(a);
div.className = "toclevel" + entry.toclevel;
toc.appendChild(div);
}
if (entries.length == 0)
toc.parentNode.removeChild(toc);
},
/////////////////////////////////////////////////////////////////////
// Footnotes generator
/////////////////////////////////////////////////////////////////////
/* Based on footnote generation code from:
* http://www.brandspankingnew.net/archive/2005/07/format_footnote.html
*/
footnotes: function () {
// Delete existing footnote entries in case we're reloading the footnodes.
var i;
var noteholder = document.getElementById("footnotes");
if (!noteholder) {
return;
}
var entriesToRemove = [];
for (i = 0; i < noteholder.childNodes.length; i++) {
var entry = noteholder.childNodes[i];
if (entry.nodeName.toLowerCase() == 'div' && entry.getAttribute("class") == "footnote")
entriesToRemove.push(entry);
}
for (i = 0; i < entriesToRemove.length; i++) {
noteholder.removeChild(entriesToRemove[i]);
}
// Rebuild footnote entries.
var cont = document.getElementById("content");
var spans = cont.getElementsByTagName("span");
var refs = {};
var n = 0;
for (i=0; i<spans.length; i++) {
if (spans[i].className == "footnote") {
n++;
var note = spans[i].getAttribute("data-note");
if (!note) {
// Use [\s\S] in place of . so multi-line matches work.
// Because JavaScript has no s (dotall) regex flag.
note = spans[i].innerHTML.match(/\s*\[([\s\S]*)]\s*/)[1];
spans[i].innerHTML =
"[<a id='_footnoteref_" + n + "' href='#_footnote_" + n +
"' title='View footnote' class='footnote'>" + n + "</a>]";
spans[i].setAttribute("data-note", note);
}
noteholder.innerHTML +=
"<div class='footnote' id='_footnote_" + n + "'>" +
"<a href='#_footnoteref_" + n + "' title='Return to text'>" +
n + "</a>. " + note + "</div>";
var id =spans[i].getAttribute("id");
if (id != null) refs["#"+id] = n;
}
}
if (n == 0)
noteholder.parentNode.removeChild(noteholder);
else {
// Process footnoterefs.
for (i=0; i<spans.length; i++) {
if (spans[i].className == "footnoteref") {
var href = spans[i].getElementsByTagName("a")[0].getAttribute("href");
href = href.match(/#.*/)[0]; // Because IE return full URL.
n = refs[href];
spans[i].innerHTML =
"[<a href='#_footnote_" + n +
"' title='View footnote' class='footnote'>" + n + "</a>]";
}
}
}
},
install: function(toclevels) {
var timerId;
function reinstall() {
asciidoc.footnotes();
if (toclevels) {
asciidoc.toc(toclevels);
}
}
function reinstallAndRemoveTimer() {
clearInterval(timerId);
reinstall();
}
timerId = setInterval(reinstall, 500);
if (document.addEventListener)
document.addEventListener("DOMContentLoaded", reinstallAndRemoveTimer, false);
else
window.onload = reinstallAndRemoveTimer;
}
}
asciidoc.install();
/*]]>*/
</script>
</head>
<body class="manpage">
<div id="header">
<h1>
TESSERACT(1) Manual Page
</h1>
<h2>NAME</h2>
<div class="sectionbody">
<p>tesseract -
command-line OCR engine
</p>
</div>
</div>
<div id="content">
<div class="sect1">
<h2 id="_synopsis">SYNOPSIS</h2>
<div class="sectionbody">
<div class="paragraph"><p><strong>tesseract</strong> <em>FILE</em> <em>OUTPUTBASE</em> [<em>OPTIONS</em>]&#8230; [<em>CONFIGFILE</em>]&#8230;</p></div>
</div>
</div>
<div class="sect1">
<h2 id="_description">DESCRIPTION</h2>
<div class="sectionbody">
<div class="paragraph"><p>tesseract(1) is a commercial quality OCR engine originally developed at HP
between 1985 and 1995. In 1995, this engine was among the top 3 evaluated by
UNLV. It was open-sourced by HP and UNLV in 2005, and has been developed
at Google until 2018.</p></div>
</div>
</div>
<div class="sect1">
<h2 id="_in_out_arguments">IN/OUT ARGUMENTS</h2>
<div class="sectionbody">
<div class="dlist"><dl>
<dt class="hdlist1">
<em>FILE</em>
</dt>
<dd>
<p>
The name of the input file.
This can either be an image file or a text file.<br>
Most image file formats (anything readable by Leptonica) are supported.<br>
A text file lists the names of all input images (one image name per line).
The results will be combined in a single file for each output file format
(txt, pdf, hocr, xml).<br>
If <em>FILE</em> is <span class="monospaced">stdin</span> or <span class="monospaced">-</span> then the standard input is used.
</p>
</dd>
<dt class="hdlist1">
<em>OUTPUTBASE</em>
</dt>
<dd>
<p>
The basename of the output file (to which the appropriate extension
will be appended). By default the output will be a text file
with <span class="monospaced">.txt</span> added to the basename unless there are one or more
parameters set which explicitly specify the desired output.<br>
If <em>OUTPUTBASE</em> is <span class="monospaced">stdout</span> or <span class="monospaced">-</span> then the standard output is used.
</p>
</dd>
</dl></div>
</div>
</div>
<div class="sect1">
<h2 id="TESSDATADIR">OPTIONS</h2>
<div class="sectionbody">
<div class="dlist"><dl>
<dt class="hdlist1">
<strong>-c</strong> <em>CONFIGVAR=VALUE</em>
</dt>
<dd>
<p>
Set value for parameter <em>CONFIGVAR</em> to VALUE. Multiple <strong>-c</strong> arguments are allowed.
</p>
</dd>
<dt class="hdlist1">
<strong>--dpi</strong> <em>N</em>
</dt>
<dd>
<p>
Specify the resolution <em>N</em> in DPI for the input image(s).
A typical value for <em>N</em> is <span class="monospaced">300</span>. Without this option,
the resolution is read from the metadata included in the image.
If an image does not include that information, Tesseract tries to guess it.
</p>
</dd>
<dt class="hdlist1">
<strong>-l</strong> <em>LANG</em>
</dt>
<dt class="hdlist1">
<strong>-l</strong> <em>SCRIPT</em>
</dt>
<dd>
<p>
The language or script to use.
If none is specified, <span class="monospaced">eng</span> (English) is assumed.
Multiple languages may be specified, separated by plus characters.
Tesseract uses 3-character ISO 639-2 language codes
(see <a href="#LANGUAGES"><strong>LANGUAGES AND SCRIPTS</strong></a>).
</p>
</dd>
<dt class="hdlist1">
<strong>--psm</strong> <em>N</em>
</dt>
<dd>
<p>
Set Tesseract to only run a subset of layout analysis and assume
a certain form of image. The options for <em>N</em> are:
</p>
<div class="literalblock">
<div class="content monospaced">
<pre>0 = Orientation and script detection (OSD) only.
1 = Automatic page segmentation with OSD.
2 = Automatic page segmentation, but no OSD, or OCR. (not implemented)
3 = Fully automatic page segmentation, but no OSD. (Default)
4 = Assume a single column of text of variable sizes.
5 = Assume a single uniform block of vertically aligned text.
6 = Assume a single uniform block of text.
7 = Treat the image as a single text line.
8 = Treat the image as a single word.
9 = Treat the image as a single word in a circle.
10 = Treat the image as a single character.
11 = Sparse text. Find as much text as possible in no particular order.
12 = Sparse text with OSD.
13 = Raw line. Treat the image as a single text line,
bypassing hacks that are Tesseract-specific.</pre>
</div></div>
</dd>
<dt class="hdlist1">
<strong>--oem</strong> <em>N</em>
</dt>
<dd>
<p>
Specify OCR Engine mode. The options for <em>N</em> are:
</p>
<div class="literalblock">
<div class="content monospaced">
<pre>0 = Original Tesseract only.
1 = Neural nets LSTM only.
2 = Tesseract + LSTM.
3 = Default, based on what is available.</pre>
</div></div>
</dd>
<dt class="hdlist1">
<strong>--tessdata-dir</strong> <em>PATH</em>
</dt>
<dd>
<p>
Specify the location of tessdata path.
</p>
</dd>
<dt class="hdlist1">
<strong>--user-patterns</strong> <em>FILE</em>
</dt>
<dd>
<p>
Specify the location of user patterns file.
</p>
</dd>
<dt class="hdlist1">
<strong>--user-words</strong> <em>FILE</em>
</dt>
<dd>
<p>
Specify the location of user words file.
</p>
</dd>
<dt class="hdlist1">
<em>CONFIGFILE</em>
</dt>
<dd>
<p>
The name of a config to use. The name can be a file in <span class="monospaced">tessdata/configs</span>
or <span class="monospaced">tessdata/tessconfigs</span>, or an absolute or relative file path.
A config is a plain text file which contains a list of parameters and
their values, one per line, with a space separating parameter from value.<br>
Interesting config files include:
</p>
<div class="ulist" id="CONFIGFILE"><ul>
<li>
<p>
<strong>alto</strong>&#8201;&#8212;&#8201;Output in ALTO format (<em>OUTPUTBASE</em><span class="monospaced">.xml</span>).
</p>
</li>
<li>
<p>
<strong>hocr</strong>&#8201;&#8212;&#8201;Output in hOCR format (<em>OUTPUTBASE</em><span class="monospaced">.hocr</span>).
</p>
</li>
<li>
<p>
<strong>page</strong>&#8201;&#8212;&#8201;Output in PAGE format (<em>OUTPUTBASE</em><span class="monospaced">.page.xml</span>).
The output can be customized with the flags:
page_xml_polygon&#8201;&#8212;&#8201;Create polygons instead of bounding boxes (default: true)
page_xml_level&#8201;&#8212;&#8201;Create the PAGE file on 0=linelevel or 1=wordlevel (default: 0)
</p>
</li>
<li>
<p>
<strong>pdf</strong>&#8201;&#8212;&#8201;Output PDF (<em>OUTPUTBASE</em><span class="monospaced">.pdf</span>).
</p>
</li>
<li>
<p>
<strong>tsv</strong>&#8201;&#8212;&#8201;Output TSV (<em>OUTPUTBASE</em><span class="monospaced">.tsv</span>).
</p>
</li>
<li>
<p>
<strong>txt</strong>&#8201;&#8212;&#8201;Output plain text (<em>OUTPUTBASE</em><span class="monospaced">.txt</span>).
</p>
</li>
<li>
<p>
<strong>get.images</strong>&#8201;&#8212;&#8201;Write processed input images to file (<em>OUTPUTBASE</em><span class="monospaced">.processedPAGENUMBER.tif</span>).
</p>
</li>
<li>
<p>
<strong>logfile</strong>&#8201;&#8212;&#8201;Redirect debug messages to file (<span class="monospaced">tesseract.log</span>).
</p>
</li>
<li>
<p>
<strong>lstm.train</strong>&#8201;&#8212;&#8201;Output files used by LSTM training (<em>OUTPUTBASE</em><span class="monospaced">.lstmf</span>).
</p>
</li>
<li>
<p>
<strong>makebox</strong>&#8201;&#8212;&#8201;Write box file (<em>OUTPUTBASE</em><span class="monospaced">.box</span>).
</p>
</li>
<li>
<p>
<strong>quiet</strong>&#8201;&#8212;&#8201;Redirect debug messages to <em>/dev/null</em>.
</p>
</li>
</ul></div>
</dd>
</dl></div>
<div class="paragraph"><p>It is possible to select several config files, for example
<span class="monospaced">tesseract image.png demo alto hocr pdf txt</span> will create four output files
<span class="monospaced">demo.alto</span>, <span class="monospaced">demo.hocr</span>, <span class="monospaced">demo.pdf</span> and <span class="monospaced">demo.txt</span> with the OCR results.</p></div>
<div class="paragraph"><p><strong>Nota bene:</strong> The options <strong>-l</strong> <em>LANG</em>, <strong>-l</strong> <em>SCRIPT</em> and <strong>--psm</strong> <em>N</em>
must occur before any <em>CONFIGFILE</em>.</p></div>
</div>
</div>
<div class="sect1">
<h2 id="_single_options">SINGLE OPTIONS</h2>
<div class="sectionbody">
<div class="dlist"><dl>
<dt class="hdlist1">
<strong>-h, --help</strong>
</dt>
<dd>
<p>
Show help message.
</p>
</dd>
<dt class="hdlist1">
<strong>--help-extra</strong>
</dt>
<dd>
<p>
Show extra help for advanced users.
</p>
</dd>
<dt class="hdlist1">
<strong>--help-psm</strong>
</dt>
<dd>
<p>
Show page segmentation modes.
</p>
</dd>
<dt class="hdlist1">
<strong>--help-oem</strong>
</dt>
<dd>
<p>
Show OCR Engine modes.
</p>
</dd>
<dt class="hdlist1">
<strong>-v, --version</strong>
</dt>
<dd>
<p>
Returns the current version of the tesseract(1) executable.
</p>
</dd>
<dt class="hdlist1">
<strong>--list-langs</strong>
</dt>
<dd>
<p>
List available languages for tesseract engine.
Can be used with <strong>--tessdata-dir</strong> <em>PATH</em>.
</p>
</dd>
<dt class="hdlist1">
<strong>--print-parameters</strong>
</dt>
<dd>
<p>
Print tesseract parameters.
</p>
</dd>
</dl></div>
</div>
</div>
<div class="sect1">
<h2 id="LANGUAGES">LANGUAGES AND SCRIPTS</h2>
<div class="sectionbody">
<div class="paragraph"><p>To recognize some text with Tesseract, it is normally necessary to specify
the language(s) or script(s) of the text (unless it is English text which is
supported by default) using <strong>-l</strong> <em>LANG</em> or <strong>-l</strong> <em>SCRIPT</em>.</p></div>
<div class="paragraph"><p>Selecting a language automatically also selects the language specific
character set and dictionary (word list).</p></div>
<div class="paragraph"><p>Selecting a script typically selects all characters of that script
which can be from different languages. The dictionary which is included
also contains a mix from different languages.
In most cases, a script also supports English.
So it is possible to recognize a language that has not been specifically
trained for by using traineddata for the script it is written in.</p></div>
<div class="paragraph"><p>More than one language or script may be specified by using <span class="monospaced">+</span>.
Example: <span class="monospaced">tesseract myimage.png myimage -l eng+deu+fra</span>.</p></div>
<div class="paragraph"><p><a href="https://github.com/tesseract-ocr/tessdata_fast">https://github.com/tesseract-ocr/tessdata_fast</a> provides fast language and
script models which are also part of Linux distributions.</p></div>
<div class="paragraph"><p>For Tesseract 4, <span class="monospaced">tessdata_fast</span> includes traineddata files for the
following languages:</p></div>
<div class="paragraph"><p><strong>afr</strong> (Afrikaans),
<strong>amh</strong> (Amharic),
<strong>ara</strong> (Arabic),
<strong>asm</strong> (Assamese),
<strong>aze</strong> (Azerbaijani),
<strong>aze_cyrl</strong> (Azerbaijani - Cyrilic),
<strong>bel</strong> (Belarusian),
<strong>ben</strong> (Bengali),
<strong>bod</strong> (Tibetan),
<strong>bos</strong> (Bosnian),
<strong>bre</strong> (Breton),
<strong>bul</strong> (Bulgarian),
<strong>cat</strong> (Catalan; Valencian),
<strong>ceb</strong> (Cebuano),
<strong>ces</strong> (Czech),
<strong>chi_sim</strong> (Chinese simplified),
<strong>chi_tra</strong> (Chinese traditional),
<strong>chr</strong> (Cherokee),
<strong>cos</strong> (Corsican),
<strong>cym</strong> (Welsh),
<strong>dan</strong> (Danish),
<strong>deu</strong> (German),
<strong>deu_latf</strong> (German Fraktur Latin),
<strong>div</strong> (Dhivehi),
<strong>dzo</strong> (Dzongkha),
<strong>ell</strong> (Greek, Modern, 1453-),
<strong>eng</strong> (English),
<strong>enm</strong> (English, Middle, 1100-1500),
<strong>epo</strong> (Esperanto),
<strong>equ</strong> (Math / equation detection module),
<strong>est</strong> (Estonian),
<strong>eus</strong> (Basque),
<strong>fas</strong> (Persian),
<strong>fao</strong> (Faroese),
<strong>fil</strong> (Filipino),
<strong>fin</strong> (Finnish),
<strong>fra</strong> (French),
<strong>frm</strong> (French, Middle, ca.1400-1600),
<strong>fry</strong> (West Frisian),
<strong>gla</strong> (Scottish Gaelic),
<strong>gle</strong> (Irish),
<strong>glg</strong> (Galician),
<strong>grc</strong> (Greek, Ancient, to 1453),
<strong>guj</strong> (Gujarati),
<strong>hat</strong> (Haitian; Haitian Creole),
<strong>heb</strong> (Hebrew),
<strong>hin</strong> (Hindi),
<strong>hrv</strong> (Croatian),
<strong>hun</strong> (Hungarian),
<strong>hye</strong> (Armenian),
<strong>iku</strong> (Inuktitut),
<strong>ind</strong> (Indonesian),
<strong>isl</strong> (Icelandic),
<strong>ita</strong> (Italian),
<strong>ita_old</strong> (Italian - Old),
<strong>jav</strong> (Javanese),
<strong>jpn</strong> (Japanese),
<strong>kan</strong> (Kannada),
<strong>kat</strong> (Georgian),
<strong>kat_old</strong> (Georgian - Old),
<strong>kaz</strong> (Kazakh),
<strong>khm</strong> (Central Khmer),
<strong>kir</strong> (Kirghiz; Kyrgyz),
<strong>kmr</strong> (Kurdish Kurmanji),
<strong>kor</strong> (Korean),
<strong>kor_vert</strong> (Korean vertical),
<strong>lao</strong> (Lao),
<strong>lat</strong> (Latin),
<strong>lav</strong> (Latvian),
<strong>lit</strong> (Lithuanian),
<strong>ltz</strong> (Luxembourgish),
<strong>mal</strong> (Malayalam),
<strong>mar</strong> (Marathi),
<strong>mkd</strong> (Macedonian),
<strong>mlt</strong> (Maltese),
<strong>mon</strong> (Mongolian),
<strong>mri</strong> (Maori),
<strong>msa</strong> (Malay),
<strong>mya</strong> (Burmese),
<strong>nep</strong> (Nepali),
<strong>nld</strong> (Dutch; Flemish),
<strong>nor</strong> (Norwegian),
<strong>oci</strong> (Occitan post 1500),
<strong>ori</strong> (Oriya),
<strong>osd</strong> (Orientation and script detection module),
<strong>pan</strong> (Panjabi; Punjabi),
<strong>pol</strong> (Polish),
<strong>por</strong> (Portuguese),
<strong>pus</strong> (Pushto; Pashto),
<strong>que</strong> (Quechua),
<strong>ron</strong> (Romanian; Moldavian; Moldovan),
<strong>rus</strong> (Russian),
<strong>san</strong> (Sanskrit),
<strong>sin</strong> (Sinhala; Sinhalese),
<strong>slk</strong> (Slovak),
<strong>slv</strong> (Slovenian),
<strong>snd</strong> (Sindhi),
<strong>spa</strong> (Spanish; Castilian),
<strong>spa_old</strong> (Spanish; Castilian - Old),
<strong>sqi</strong> (Albanian),
<strong>srp</strong> (Serbian),
<strong>srp_latn</strong> (Serbian - Latin),
<strong>sun</strong> (Sundanese),
<strong>swa</strong> (Swahili),
<strong>swe</strong> (Swedish),
<strong>syr</strong> (Syriac),
<strong>tam</strong> (Tamil),
<strong>tat</strong> (Tatar),
<strong>tel</strong> (Telugu),
<strong>tgk</strong> (Tajik),
<strong>tha</strong> (Thai),
<strong>tir</strong> (Tigrinya),
<strong>ton</strong> (Tonga),
<strong>tur</strong> (Turkish),
<strong>uig</strong> (Uighur; Uyghur),
<strong>ukr</strong> (Ukrainian),
<strong>urd</strong> (Urdu),
<strong>uzb</strong> (Uzbek),
<strong>uzb_cyrl</strong> (Uzbek - Cyrilic),
<strong>vie</strong> (Vietnamese),
<strong>yid</strong> (Yiddish),
<strong>yor</strong> (Yoruba)</p></div>
<div class="paragraph"><p>To use a non-standard language pack named <span class="monospaced">foo.traineddata</span>, set the
<span class="monospaced">TESSDATA_PREFIX</span> environment variable so the file can be found at
<span class="monospaced">TESSDATA_PREFIX/tessdata/foo.traineddata</span> and give Tesseract the
argument <strong>-l</strong> <span class="monospaced">foo</span>.</p></div>
<div class="paragraph"><p>For Tesseract 4, <span class="monospaced">tessdata_fast</span> includes traineddata files for the
following scripts:</p></div>
<div class="paragraph"><p><strong>Arabic</strong>,
<strong>Armenian</strong>,
<strong>Bengali</strong>,
<strong>Canadian_Aboriginal</strong>,
<strong>Cherokee</strong>,
<strong>Cyrillic</strong>,
<strong>Devanagari</strong>,
<strong>Ethiopic</strong>,
<strong>Fraktur</strong>,
<strong>Georgian</strong>,
<strong>Greek</strong>,
<strong>Gujarati</strong>,
<strong>Gurmukhi</strong>,
<strong>HanS</strong> (Han simplified),
<strong>HanS_vert</strong> (Han simplified, vertical),
<strong>HanT</strong> (Han traditional),
<strong>HanT_vert</strong> (Han traditional, vertical),
<strong>Hangul</strong>,
<strong>Hangul_vert</strong> (Hangul vertical),
<strong>Hebrew</strong>,
<strong>Japanese</strong>,
<strong>Japanese_vert</strong> (Japanese vertical),
<strong>Kannada</strong>,
<strong>Khmer</strong>,
<strong>Lao</strong>,
<strong>Latin</strong>,
<strong>Malayalam</strong>,
<strong>Myanmar</strong>,
<strong>Oriya</strong> (Odia),
<strong>Sinhala</strong>,
<strong>Syriac</strong>,
<strong>Tamil</strong>,
<strong>Telugu</strong>,
<strong>Thaana</strong>,
<strong>Thai</strong>,
<strong>Tibetan</strong>,
<strong>Vietnamese</strong>.</p></div>
<div class="paragraph"><p>The same languages and scripts are available from
<a href="https://github.com/tesseract-ocr/tessdata_best">https://github.com/tesseract-ocr/tessdata_best</a>.
<span class="monospaced">tessdata_best</span> provides slow language and script models.
These models are needed for training. They also can give better OCR results,
but the recognition takes much more time.</p></div>
<div class="paragraph"><p>Both <span class="monospaced">tessdata_fast</span> and <span class="monospaced">tessdata_best</span> only support the LSTM OCR engine.</p></div>
<div class="paragraph"><p>There is a third repository, <a href="https://github.com/tesseract-ocr/tessdata">https://github.com/tesseract-ocr/tessdata</a>,
with models which support both the Tesseract 3 legacy OCR engine and the
Tesseract 4 LSTM OCR engine.</p></div>
</div>
</div>
<div class="sect1">
<h2 id="_config_files_and_augmenting_with_user_data">CONFIG FILES AND AUGMENTING WITH USER DATA</h2>
<div class="sectionbody">
<div class="paragraph"><p>Tesseract config files consist of lines with parameter-value pairs (space
separated). The parameters are documented as flags in the source code like
the following one in tesseractclass.h:</p></div>
<div class="paragraph"><p><span class="monospaced">STRING_VAR_H(tessedit_char_blacklist, "",
"Blacklist of chars not to recognize");</span></p></div>
<div class="paragraph"><p>These parameters may enable or disable various features of the engine, and
may cause it to load (or not load) various data. For instance, let&#8217;s suppose
you want to OCR in English, but suppress the normal dictionary and load an
alternative word list and an alternative list of patterns&#8201;&#8212;&#8201;these two files
are the most commonly used extra data files.</p></div>
<div class="paragraph"><p>If your language pack is in <em>/path/to/eng.traineddata</em> and the hocr config
is in <em>/path/to/configs/hocr</em> then create three new files:</p></div>
<div class="paragraph"><p><em>/path/to/eng.user-words</em>:</p></div>
<div class="verseblock">
<pre class="content">the
quick
brown
fox
jumped</pre>
<div class="attribution">
</div></div>
<div class="paragraph"><p><em>/path/to/eng.user-patterns</em>:</p></div>
<div class="verseblock">
<pre class="content">1-\d\d\d-GOOG-411
www.\n\\\*.com</pre>
<div class="attribution">
</div></div>
<div class="paragraph"><p><em>/path/to/configs/bazaar</em>:</p></div>
<div class="verseblock">
<pre class="content">load_system_dawg F
load_freq_dawg F
user_words_suffix user-words
user_patterns_suffix user-patterns</pre>
<div class="attribution">
</div></div>
<div class="paragraph"><p>Now, if you pass the word <em>bazaar</em> as a <a href="#CONFIGFILE"><em>CONFIGFILE</em></a> to
Tesseract, Tesseract will not bother loading the system dictionary nor
the dictionary of frequent words and will load and use the <em>eng.user-words</em>
and <em>eng.user-patterns</em> files you provided. The former is a simple word list,
one per line. The format of the latter is documented in <em>dict/trie.h</em>
on <em>read_pattern_list()</em>.</p></div>
</div>
</div>
<div class="sect1">
<h2 id="_environment_variables">ENVIRONMENT VARIABLES</h2>
<div class="sectionbody">
<div class="dlist"><dl>
<dt class="hdlist1">
<strong><span class="monospaced">TESSDATA_PREFIX</span></strong>
</dt>
<dd>
<p>
If the <span class="monospaced">TESSDATA_PREFIX</span> is set to a path, then that path is used to
find the <span class="monospaced">tessdata</span> directory with language and script recognition
models and config files.
Using <a href="#TESSDATADIR"><strong>--tessdata-dir</strong> <em>PATH</em></a> is the recommended alternative.
</p>
</dd>
<dt class="hdlist1">
<strong><span class="monospaced">OMP_THREAD_LIMIT</span></strong>
</dt>
<dd>
<p>
If the <span class="monospaced">tesseract</span> executable was built with multithreading support,
it will normally use four CPU cores for the OCR process. While this
can be faster for a single image, it gives bad performance if the host
computer provides less than four CPU cores or if OCR is made for many images.
Only a single CPU core is used with <span class="monospaced">OMP_THREAD_LIMIT=1</span>.
</p>
</dd>
</dl></div>
</div>
</div>
<div class="sect1">
<h2 id="_history">HISTORY</h2>
<div class="sectionbody">
<div class="paragraph"><p>The engine was developed at Hewlett Packard Laboratories Bristol and at
Hewlett Packard Co, Greeley Colorado between 1985 and 1994, with some more
changes made in 1996 to port to Windows, and some C++izing in 1998. A
lot of the code was written in C, and then some more was written in C++.
The C++ code makes heavy use of a list system using macros. This predates
STL, was portable before STL, and is more efficient than STL lists, but has
the big negative that if you do get a segmentation violation, it is hard to
debug.</p></div>
<div class="paragraph"><p>Version 2.00 brought Unicode (UTF-8) support, six languages, and the ability
to train Tesseract.</p></div>
<div class="paragraph"><p>Tesseract was included in UNLV&#8217;s Fourth Annual Test of OCR Accuracy.
See <a href="https://github.com/tesseract-ocr/docs/blob/main/AT-1995.pdf">https://github.com/tesseract-ocr/docs/blob/main/AT-1995.pdf</a>.
Since Tesseract 2.00,
scripts are now included to allow anyone to reproduce some of these tests.
See <a href="https://tesseract-ocr.github.io/tessdoc/TestingTesseract.html">https://tesseract-ocr.github.io/tessdoc/TestingTesseract.html</a> for more
details.</p></div>
<div class="paragraph"><p>Tesseract 3.00 added a number of new languages, including Chinese, Japanese,
and Korean. It also introduced a new, single-file based system of managing
language data.</p></div>
<div class="paragraph"><p>Tesseract 3.02 added BiDirectional text support, the ability to recognize
multiple languages in a single image, and improved layout analysis.</p></div>
<div class="paragraph"><p>Tesseract 4 adds a new neural net (LSTM) based OCR engine which is focused
on line recognition, but also still supports the legacy Tesseract OCR engine of
Tesseract 3 which works by recognizing character patterns. Compatibility with
Tesseract 3 is enabled by <span class="monospaced">--oem 0</span>. This also needs traineddata files which
support the legacy engine, for example those from the tessdata repository
(<a href="https://github.com/tesseract-ocr/tessdata">https://github.com/tesseract-ocr/tessdata</a>).</p></div>
<div class="paragraph"><p>For further details, see the release notes in the Tesseract documentation
(<a href="https://tesseract-ocr.github.io/tessdoc/ReleaseNotes.html">https://tesseract-ocr.github.io/tessdoc/ReleaseNotes.html</a>).</p></div>
</div>
</div>
<div class="sect1">
<h2 id="_resources">RESOURCES</h2>
<div class="sectionbody">
<div class="paragraph"><p>Main web site: <a href="https://github.com/tesseract-ocr">https://github.com/tesseract-ocr</a><br>
User forum: <a href="https://groups.google.com/g/tesseract-ocr">https://groups.google.com/g/tesseract-ocr</a><br>
Documentation: <a href="https://tesseract-ocr.github.io/">https://tesseract-ocr.github.io/</a><br>
Information on training: <a href="https://tesseract-ocr.github.io/tessdoc/Training-Tesseract.html">https://tesseract-ocr.github.io/tessdoc/Training-Tesseract.html</a></p></div>
</div>
</div>
<div class="sect1">
<h2 id="_see_also">SEE ALSO</h2>
<div class="sectionbody">
<div class="paragraph"><p>ambiguous_words(1), cntraining(1), combine_tessdata(1), dawg2wordlist(1),
shape_training(1), mftraining(1), unicharambigs(5), unicharset(5),
unicharset_extractor(1), wordlist2dawg(1)</p></div>
</div>
</div>
<div class="sect1">
<h2 id="_author">AUTHOR</h2>
<div class="sectionbody">
<div class="paragraph"><p>Tesseract development was led at Hewlett-Packard and Google by Ray Smith.
The development team has included:</p></div>
<div class="paragraph"><p>Ahmad Abdulkader, Chris Newton, Dan Johnson, Dar-Shyang Lee, David Eger,
Eric Wiseblatt, Faisal Shafait, Hiroshi Takenaka, Joe Liu, Joern Wanke,
Mark Seaman, Mickey Namiki, Nicholas Beato, Oded Fuhrmann, Phil Cheatle,
Pingping Xiu, Pong Eksombatchai (Chantat), Ranjith Unnikrishnan, Raquel
Romano, Ray Smith, Rika Antonova, Robert Moss, Samuel Charron, Sheelagh
Lloyd, Shobhit Saxena, and Thomas Kielbus.</p></div>
<div class="paragraph"><p>For a list of contributors see
<a href="https://github.com/tesseract-ocr/tesseract/blob/main/AUTHORS">https://github.com/tesseract-ocr/tesseract/blob/main/AUTHORS</a>.</p></div>
</div>
</div>
<div class="sect1">
<h2 id="_copying">COPYING</h2>
<div class="sectionbody">
<div class="paragraph"><p>Licensed under the Apache License, Version 2.0</p></div>
</div>
</div>
</div>
<div id="footnotes"><hr></div>
<div id="footer">
<div id="footer-text">
Last updated
2024-11-10 20:33:28 CET
</div>
</div>
</body>
</html>