Borealis-Legacy/Modules/data_collector.py

292 lines
9.3 KiB
Python

# Modules/data_collector.py
import threading
import time
import re
import sys
import numpy as np
import cv2
# Vision-related Imports
import pytesseract
import easyocr
import torch
from PIL import Image, ImageGrab, ImageFilter
from PyQt5.QtWidgets import QApplication, QWidget
from PyQt5.QtCore import QRect, QPoint, Qt, QMutex, QTimer
from PyQt5.QtGui import QPainter, QPen, QColor, QFont
# Initialize EasyOCR with CUDA support
reader_cpu = easyocr.Reader(['en'], gpu=False)
reader_gpu = easyocr.Reader(['en'], gpu=True if torch.cuda.is_available() else False)
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
DEFAULT_WIDTH = 180
DEFAULT_HEIGHT = 130
HANDLE_SIZE = 8
LABEL_HEIGHT = 20
collector_mutex = QMutex()
regions = {}
app_instance = None
def _ensure_qapplication():
"""
Ensures that QApplication is initialized before creating widgets.
Must be called from the main thread.
"""
global app_instance
if app_instance is None:
app_instance = QApplication(sys.argv) # Start in main thread
def create_ocr_region(region_id, x=250, y=50, w=DEFAULT_WIDTH, h=DEFAULT_HEIGHT, color=(255, 255, 0)):
"""
Creates an OCR region with a visible, resizable box on the screen.
The color parameter allows customization (default yellow, blue for overlays).
"""
_ensure_qapplication()
collector_mutex.lock()
if region_id in regions:
collector_mutex.unlock()
return
regions[region_id] = {
'bbox': [x, y, w, h],
'raw_text': "",
'widget': OCRRegionWidget(x, y, w, h, region_id, color)
}
collector_mutex.unlock()
def get_raw_text(region_id):
collector_mutex.lock()
if region_id not in regions:
collector_mutex.unlock()
return ""
text = regions[region_id]['raw_text']
collector_mutex.unlock()
return text
def start_collector():
t = threading.Thread(target=_update_ocr_loop, daemon=True)
t.start()
def _update_ocr_loop():
while True:
collector_mutex.lock()
region_ids = list(regions.keys())
collector_mutex.unlock()
for rid in region_ids:
collector_mutex.lock()
bbox = regions[rid]['bbox'][:]
collector_mutex.unlock()
x, y, w, h = bbox
screenshot = ImageGrab.grab(bbox=(x, y, x + w, y + h))
processed = _preprocess_image(screenshot)
raw_text = pytesseract.image_to_string(processed, config='--psm 6 --oem 1')
collector_mutex.lock()
if rid in regions:
regions[rid]['raw_text'] = raw_text
collector_mutex.unlock()
time.sleep(0.7)
def _preprocess_image(image):
gray = image.convert("L")
scaled = gray.resize((gray.width * 3, gray.height * 3))
thresh = scaled.point(lambda p: 255 if p > 200 else 0)
return thresh.filter(ImageFilter.MedianFilter(3))
def find_word_positions(region_id, word, offset_x=0, offset_y=0, margin=5, ocr_engine="CPU"):
"""
Finds positions of a specific word within the OCR region.
Applies user-defined offset and margin adjustments.
Uses Tesseract (CPU) or EasyOCR (GPU) depending on the selected engine.
"""
collector_mutex.lock()
if region_id not in regions:
collector_mutex.unlock()
return []
bbox = regions[region_id]['bbox']
collector_mutex.unlock()
# Extract OCR region position and size
x, y, w, h = bbox
left, top, right, bottom = x, y, x + w, y + h
if right <= left or bottom <= top:
print(f"[ERROR] Invalid OCR region bounds: {bbox}")
return []
try:
image = ImageGrab.grab(bbox=(left, top, right, bottom))
processed = _preprocess_image(image)
# Get original and processed image sizes
orig_width, orig_height = image.size
proc_width, proc_height = processed.size
# Scale factor between processed image and original screenshot
scale_x = orig_width / proc_width
scale_y = orig_height / proc_height
word_positions = []
if ocr_engine == "CPU":
# Use Tesseract (CPU)
data = pytesseract.image_to_data(processed, config='--psm 6 --oem 1', output_type=pytesseract.Output.DICT)
for i in range(len(data['text'])):
if re.search(rf"\b{word}\b", data['text'][i], re.IGNORECASE):
x_scaled = int(data['left'][i] * scale_x)
y_scaled = int(data['top'][i] * scale_y)
w_scaled = int(data['width'][i] * scale_x)
h_scaled = int(data['height'][i] * scale_y)
word_positions.append((x_scaled + offset_x, y_scaled + offset_y, w_scaled + (margin * 2), h_scaled + (margin * 2)))
else:
# Use EasyOCR (GPU) - Convert PIL image to NumPy array
image_np = np.array(processed)
results = reader_gpu.readtext(image_np)
for (bbox, text, _) in results:
if re.search(rf"\b{word}\b", text, re.IGNORECASE):
(x_min, y_min), (x_max, y_max) = bbox[0], bbox[2]
x_scaled = int(x_min * scale_x)
y_scaled = int(y_min * scale_y)
w_scaled = int((x_max - x_min) * scale_x)
h_scaled = int((y_max - y_min) * scale_y)
word_positions.append((x_scaled + offset_x, y_scaled + offset_y, w_scaled + (margin * 2), h_scaled + (margin * 2)))
return word_positions
except Exception as e:
print(f"[ERROR] Failed to capture OCR region: {e}")
return []
def draw_identification_boxes(region_id, positions, color=(0, 0, 255)):
"""
Draws non-interactive rectangles at specified positions within the given OCR region.
"""
collector_mutex.lock()
if region_id in regions and 'widget' in regions[region_id]:
widget = regions[region_id]['widget']
widget.set_draw_positions(positions, color)
collector_mutex.unlock()
class OCRRegionWidget(QWidget):
def __init__(self, x, y, w, h, region_id, color):
super().__init__()
self.setGeometry(x, y, w, h)
self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint | Qt.Tool)
self.setAttribute(Qt.WA_TranslucentBackground, True)
self.setAttribute(Qt.WA_TransparentForMouseEvents, False)
self.drag_offset = None
self.selected_handle = None
self.region_id = region_id
self.box_color = QColor(*color)
self.draw_positions = []
self.show()
def paintEvent(self, event):
painter = QPainter(self)
pen = QPen(self.box_color)
pen.setWidth(5)
painter.setPen(pen)
# Draw main rectangle
painter.drawRect(0, 0, self.width(), self.height())
# Draw detected word overlays
pen.setWidth(2)
pen.setColor(QColor(0, 0, 255))
painter.setPen(pen)
for x, y, w, h in self.draw_positions:
painter.drawRect(x, y, w, h)
# Draw resize handles
painter.setBrush(self.box_color)
for handle in self._resize_handles():
painter.drawRect(handle)
def set_draw_positions(self, positions, color):
"""
Update the positions where identification boxes should be drawn.
"""
self.draw_positions = positions
self.box_color = QColor(*color)
self.update()
def _resize_handles(self):
w, h = self.width(), self.height()
return [
QRect(0, 0, HANDLE_SIZE, HANDLE_SIZE), # Top-left
QRect(w - HANDLE_SIZE, h - HANDLE_SIZE, HANDLE_SIZE, HANDLE_SIZE) # Bottom-right
]
def mousePressEvent(self, event):
if event.button() == Qt.LeftButton:
for i, handle in enumerate(self._resize_handles()):
if handle.contains(event.pos()):
self.selected_handle = i
return
self.drag_offset = event.pos()
def mouseMoveEvent(self, event):
if self.selected_handle is not None:
w, h = self.width(), self.height()
if self.selected_handle == 0: # Top-left
new_w = w + (self.x() - event.globalX())
new_h = h + (self.y() - event.globalY())
new_x = event.globalX()
new_y = event.globalY()
if new_w < 20: new_w = 20
if new_h < 20: new_h = 20
self.setGeometry(new_x, new_y, new_w, new_h)
elif self.selected_handle == 1: # Bottom-right
new_w = event.globalX() - self.x()
new_h = event.globalY() - self.y()
if new_w < 20: new_w = 20
if new_h < 20: new_h = 20
self.setGeometry(self.x(), self.y(), new_w, new_h)
collector_mutex.lock()
if self.region_id in regions:
regions[self.region_id]['bbox'] = [self.x(), self.y(), self.width(), self.height()]
collector_mutex.unlock()
self.update()
elif self.drag_offset:
new_x = event.globalX() - self.drag_offset.x()
new_y = event.globalY() - self.drag_offset.y()
self.move(new_x, new_y)
collector_mutex.lock()
if self.region_id in regions:
regions[self.region_id]['bbox'] = [new_x, new_y, self.width(), self.height()]
collector_mutex.unlock()