Further optimized identification_overlay node GPU acceleration / processing.
This commit is contained in:
parent
0515f8feeb
commit
ce392d7a04
Binary file not shown.
@ -113,9 +113,9 @@ def _preprocess_image(image):
|
||||
|
||||
def find_word_positions(region_id, word, offset_x=0, offset_y=0, margin=5, ocr_engine="CPU"):
|
||||
"""
|
||||
Finds positions of a specific word within the OCR region.
|
||||
Applies user-defined offset and margin adjustments.
|
||||
Uses Tesseract (CPU) or EasyOCR (GPU) depending on the selected engine.
|
||||
Optimized function to detect word positions in an OCR region.
|
||||
Uses raw screen data without preprocessing for max performance.
|
||||
Uses Tesseract (CPU) or EasyOCR (GPU) depending on user selection.
|
||||
"""
|
||||
collector_mutex.lock()
|
||||
if region_id not in regions:
|
||||
@ -134,45 +134,42 @@ def find_word_positions(region_id, word, offset_x=0, offset_y=0, margin=5, ocr_e
|
||||
return []
|
||||
|
||||
try:
|
||||
# Capture raw screen image (NO preprocessing)
|
||||
image = ImageGrab.grab(bbox=(left, top, right, bottom))
|
||||
processed = _preprocess_image(image)
|
||||
|
||||
# Get original and processed image sizes
|
||||
# Get original image size
|
||||
orig_width, orig_height = image.size
|
||||
proc_width, proc_height = processed.size
|
||||
|
||||
# Scale factor between processed image and original screenshot
|
||||
scale_x = orig_width / proc_width
|
||||
scale_y = orig_height / proc_height
|
||||
|
||||
word_positions = []
|
||||
|
||||
if ocr_engine == "CPU":
|
||||
# Use Tesseract (CPU)
|
||||
data = pytesseract.image_to_data(processed, config='--psm 6 --oem 1', output_type=pytesseract.Output.DICT)
|
||||
# Use Tesseract directly on raw PIL image (no preprocessing)
|
||||
data = pytesseract.image_to_data(image, config='--psm 6 --oem 1', output_type=pytesseract.Output.DICT)
|
||||
|
||||
for i in range(len(data['text'])):
|
||||
if re.search(rf"\b{word}\b", data['text'][i], re.IGNORECASE):
|
||||
x_scaled = int(data['left'][i] * scale_x)
|
||||
y_scaled = int(data['top'][i] * scale_y)
|
||||
w_scaled = int(data['width'][i] * scale_x)
|
||||
h_scaled = int(data['height'][i] * scale_y)
|
||||
x_scaled = int(data['left'][i])
|
||||
y_scaled = int(data['top'][i])
|
||||
w_scaled = int(data['width'][i])
|
||||
h_scaled = int(data['height'][i])
|
||||
|
||||
word_positions.append((x_scaled + offset_x, y_scaled + offset_y, w_scaled + (margin * 2), h_scaled + (margin * 2)))
|
||||
|
||||
else:
|
||||
# Use EasyOCR (GPU) - Convert PIL image to NumPy array
|
||||
image_np = np.array(processed)
|
||||
# Convert PIL image to NumPy array for EasyOCR
|
||||
image_np = np.array(image)
|
||||
|
||||
# Run GPU OCR
|
||||
results = reader_gpu.readtext(image_np)
|
||||
|
||||
for (bbox, text, _) in results:
|
||||
if re.search(rf"\b{word}\b", text, re.IGNORECASE):
|
||||
(x_min, y_min), (x_max, y_max) = bbox[0], bbox[2]
|
||||
|
||||
x_scaled = int(x_min * scale_x)
|
||||
y_scaled = int(y_min * scale_y)
|
||||
w_scaled = int((x_max - x_min) * scale_x)
|
||||
h_scaled = int((y_max - y_min) * scale_y)
|
||||
x_scaled = int(x_min)
|
||||
y_scaled = int(y_min)
|
||||
w_scaled = int(x_max - x_min)
|
||||
h_scaled = int(y_max - y_min)
|
||||
|
||||
word_positions.append((x_scaled + offset_x, y_scaled + offset_y, w_scaled + (margin * 2), h_scaled + (margin * 2)))
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user